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Automation of all routine work?

Will he write a PhD for me?

Will it replace all other AIs?

AND HOW DO THESE TRANSFORMERS WORK?

Is mass unemployment looming?

Unsupervised AI?

AI Spy?
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TRANSFORMERS, GPT, AND EVEN MORE
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AI Explosive Growth: Recently, AI has become a deafening trend, transforming industries and enriching our day-to-day 
experiences. From image recognition technologies to autonomous driving, AI has established itself as a key driver of 
innovation.

New horizons of AI application: Every day brings news of breakthroughs in AI, expanding its applications from finding 
new drugs to analyzing composite materials. Systems like ChatGPT demonstrate the ability to not only create essays and 
program code, but also to conduct intelligent dialogues to help make sense of complex issues.

Rethinking NLP and Growing Faith in Technology: Admiration for AI's achievements leads to a new kind of faith in the 
technology. Startups are looking to replicate the success of OpenAI by reimagining the use of NLP in everyday life. 
Investors, having forgotten about blockchain and META universes, are now looking for revolutionary opportunities in AI.

Purpose : Explain the current status of transformers technology, understand their real capabilities and limitations. To 
present to a wide range of specialists and users how AI and transformers can be used in various industries, emphasizing 
their impact on the future of the industry and society.

Transformers are a powerful new way of representing natural language that can capture long-range dependencies and 
complex relationships. They have enabled us to make significant advances in natural language understanding, generation, 

and translation
Sundar Pichai, CEO of Google
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Transformers in the context of Natural Language Processing (NLP) are a type of deep learning model 
architecture in AI specifically designed to work with data sequences such as text

The name "transformers" comes from the key mechanism behind these models, the "attention" mechanism, which allows the model 
to "transform" input data (e.g., text) into a higher-level internal representation.

Transformers are often associated with Large Language Models (LLMs), such as GPT and BERT, which often use the architecture of 
Transformers, but are scaled to a very large number of parameters, allowing them to better understand and generate natural 
language. Feature of Transformers:

Sequence Processing: Transformers are able to process words (or other elements) in a sentence not sequentially but in parallel, making 
them very efficient and fast at learning and predicting.

Attention Mechanism: The main component of transformers is the attention mechanism, which allows the model to focus on different 
parts of the input data depending on the task. For example, when translating a sentence, the model can synchronously take into account the 
context of the entire sentence rather than processing each word individually.
This helps the model understand the context and semantic relationships between words in the text.

Scalability: Transformers scale well due to their ability to handle large amounts of data and the complexity of models. They can be trained on 
huge corpora of text and are capable of generating, classifying, translating, and performing a variety of other tasks at a high level.

TRANSFORMERS EXAMPLES
GPT (Generative Pre-trained Transformer): a series of 
models (GPT-2, GPT-3) that are capable of generating text, answering 
questions, translating texts, and more. 

BERT (Bidirectional Encoder Representations from
Transformers): Understanding the context and relationships in the text, 
used for text classification, sentiment analysis, information extraction, and 
answering questions. Rewind with solid fill Rewind with solid fill
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As the market evolves, competition increases, the scale of models grows and computational costs increase at 
the same time, despite significant progress in the development of LLMs, there are relatively few publicly 

available services based on them, the sector is still at the stage of searching for effective and sustainable 
business models

Google researchers (Vaswani,...) presented the 
revolutionary "Transformer" architecture in the 
article "Attention is All You Need". This was a 
significant breakthrough, allowing models to 
process data sequences in parallel and more 
efficiently

2018

2019

2020

2021

2022

2023

2024

ELMo (94 m)

GPT (117 m)

BERT (100-340 m)

GPT-2 (1.5 B)

T5: text-to-text
 (11 B)

GPT-3 (175 B)

BLOOM: 
HuggingFace+ (60 b)

LLAMA (7 B)

GPT-4 (1 Tr)

Olympus (2 Tr)
GPT-5 (~17 Tr)

NeMO  (8.3 B)
XLNet  (512 m)

Google introduced BERT, a pioneering 
approach to pre-training language 
representations. BERT used a 
bidirectional context to understand 
the text, which greatly improved the 
results of the set of texts.

OpenAI released GPT using a transformer 
architecture to create a powerful pre-
trained language model. GPT has shown 
impressive results in generating coherent 
and persuasive texts.

OpenAI introduced GPT-2, significantly improving and 
expanding the capabilities of its previous model. GPT-2 
has raised concerns about its potential use to create 
disinformation, highlighting the need for responsible 
use of AI.

OpenAI has released GPT-3, a 175-billion-parameter model that has set 
new standards for language models for the quality of text generation and 
the ability to learn with minimal interference.

Amazon Olympus has not yet been officially released, and 
there is no exact date for its launch. However, Amazon is 
rumored to have started training this model in 2023 and plans 
to integrate it into its Alexa voice assistant. Olympus has 2 
trillion parameters, which is more than any other LLM currently 
being trained.
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TRANSFORMERS AND OTHER ARCHITECTURES
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Transformers are an architecture of neural networks focused on working with sequential data – text strings. 
However, this architecture differs from the RNN (Recurrent Neural Networks) and LSTM (Long Short-Term 

Memory) architectures, which are similar in terms of the processed data

6

• Parallel Processing: Transformers can process all words (or 
other elements of a sequence) at the same time, so they can 
quickly work with large amounts of data.

• The Mechanism of Attention: Transformers use an attentional 
mechanism to determine the relationships between all the 
words in a sentence, which allows the model to better grasp 
the context and meaning of the text.

• No feedback loops: Transformers don't have feedback loops 
like RNNs and LSTMs, making them less prone to disappearing 
and exploding gradient issues and simplifying the learning 
process.

• Sequential processing: RNNs process data 
sequentially, passing information from one step to 
the next, which can slow down the processing of 
large amounts of data.

• Feedback loops: RNNs have feedback loops, 
which allows them to retain information about 
previous steps, but also makes them vulnerable to 
problems with fading and exploding gradients.

• LSTM - Improved Version of RNN: LSTM is a special 
type of RNN designed to solve the problem of 
vanishing gradient by using structures called 
"memory cells".

These cells allow the model to retain 
information for long periods of time and learn 
more effectively from data with long 
dependencies

TRANSFORMERS RNN & LTSM
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STANDARD ATTENTION MECHANISM
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The attention mechanism in transformers is a key element of their architecture, allows the model to focus on 
certain parts of the input data (for example, words in a sentence) to perform a specific task, provides weighting 

of the importance of a word, creating combinations, and parallel text processing

*) The attention mechanism was proposed somewhat earlier than the full-fledged architecture of transformers. One of the key moments in the development of the attention 
mechanism was in 2014, when the "Neural Machine Translation with Attention" model was introduced by Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

The central components of the attention mechanism in the Transformer architecture* are the vectors Q (Query), K (Key), and V (Value). 
They are used so that the model can determine which parts of the input data to pay attention to when performing the task:

• Each word (or other unit of data) in the input 
sequence is transformed into three vectors 𝑞, 𝑘, 
𝑣, which are packaged into aggregate matrices 𝑄, 
𝐾, and 𝑉. These transformations are performed 
using three different sets of trained weights.

• The Query vector (Q) is associated with the 
current word for which attention is calculated.

• The Key (K) and Value (V) vectors are associated 
with all words in the input sequence (including the 
current word).

• For each pair of Query and Key, a measure of 
similarity is determined, computed through the 
dot product between Q and K.

• The resulting similarity values are then scaled 
and normalized using the softmax function to 
get the attention weights, which are summed up 
in 1.

• Attention weights are multiplied by 
the corresponding Value vectors: the 
greater the attention weight of a word, 
the greater the contribution of its 
Value vector to the output.

• The Value vectors are then summed 
to form a weighted sum, which 
becomes the output for the current 
word.𝑒𝐪,𝐤𝑖

= 𝐪 ⋅ 𝐤𝑖

𝛼𝐪,𝐤𝑖
= softmax(𝑒𝐪,𝐤𝑖

) attention(𝐪, 𝐊, 𝐕) = ෍

𝑖

𝛼𝐪,𝐤𝑖
𝐯𝐤𝑖

{𝑄, 𝐾, 𝑉}

1. VECTOR SELECTION 2. ATTENTION WEIGHTS 3. WEIGHTED AMOUNT

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑖 =
𝑒𝑧𝑖

σ𝑗=1
𝐾 𝑒𝑧𝑗
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MULTI-HEAD ATTENTION
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WIDENING THE FIELD OF VISION: Instead of having a single set of attentional weights (as in the standard 
attentional mechanism), the multi-headed attentional mechanism has multiple sets of weights, each of which 

is trained to pick up on different aspects of information. This allows the model to process information from 
different angles at the same time.
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The input data is divided into several 
"heads" of attention. For example, if the 
dimension of the input vector is 512 and 8 
heads are used, each head will have a 
dimension of 64 Each head applies the attentional 

mechanism (using its own sets of 
weights Q, K, V) independently of the 
others, extracting different aspects of 
information from the input data The outputs of all the attention heads 

are then concatenated into a single 
vector that has an initial dimension (in 
our example, 512).

The concatenated vector 
passes through the line layer 
to align the dimensionality with 
the dimension of the input 
layer and integrate the 
information from all the heads

Separation into heads

Applying Attention 
Independently

Output 
concatenation

Linear transformation

The multi-head attention mechanism has significant advantages (and is the main base for the success of transformers): 
Improved understanding of context (taking into account information from different levels of abstraction)
Concurrency and efficiency (each "head" works independently, which makes it possible to do parallel calculations)
Rich representation of the data (this mechanism allows the model to capture different aspects of the data)
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MASKED MULTI-HEAD ATTENTION
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In the Transformer model, the term "masked multi-head attention" refers to a special version of the multi-head 
attention mechanism that prevents information from "leaking" from future tokens when processing each token 

in the sequence.
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• Self-attention, sometimes referred to as internal attention, is a mechanism that allows a 
transformer model to process and encode a sequence of inputs, taking into account the 
dependencies between all tokens in that sequence. Unlike traditional recurrent neural 
networks (RNNs), self-attention allows the model to consider all sequence positions at once, 
making the process more efficient and eliminating long-distance communication issues.

• Masked Attention. In the context of Transformer, "masking" means that when calculating 
self-attention for a given token, the model does not take into account (or "does not see") 
subsequent tokens in the sequence. This is achieved by applying a mask to the attention 
scores before applying softmax.

• Masking Order:
o The model is trained to generate text, and is currently processing the word at position i. 
o To predict the next word at position i+1, the model should only use information from positions 1 

before i and should not have access to information from positions i+1 onwards. 
o Masked multi-head attention accomplishes this by applying a mask to the attention values in 

such a way that any "future" tokens (after i) are not counted.

0 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 0 −𝑖𝑛𝑓
0 0 0 0

• First Line of Mask: When processing the 
first token, the model can only consider 
information about the first token.

• Second line of the mask: allows you to 
take into account the information about 
the first and second tokens when 
processing the second token,

• … ….

• Values of −inf  block "looking into the 
future", since after using softmax, 
tokens corresponding to such values 
will receive very little weight.

Rewind with solid fill Rewind with solid fill

For a sequence of 4 tokens 
(when the last token is 

generated):



INPUT/OUTPUT EMBEDDING
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Embedding mechanisms allow you to perform transformations between words and vectors. For Input 
Embedding, it is the conversion of input words (tokens) into fixed-size vectors, and for Output Embedding, the 

output (in the form of vectors with the probabilities of the next word) is converted back to words
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• Token encoding. It is carried out by assigning indexes to each unique word in the dictionary. 
For example, you can build a dictionary{′𝑐𝑎𝑡′: 0, ′𝑑𝑜𝑔′: 1, ′𝑓𝑖𝑠ℎ′: 2}.

• Using the Embedding Matrix. Creates a matrix of size E [𝑣𝑜𝑐𝑎𝑏_𝑠𝑖𝑧𝑒, 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_dim], 
here 𝑣𝑜𝑐𝑎𝑏_𝑠𝑖𝑧𝑒 — This is the size of the dictionary and embedding_dim is the dimension of the 
vector space in which the words are embedded. The elements of the E matrix are initialized 
with random numbers and then trained in conjunction with other model parameters.

• Converting Words to Vectors. For a word with an index𝑖, its embedding (vector representation) 
is obtained as the i-th line of the matrix E. This can be expressed as  𝑣 = 𝐸[𝑖].

𝐸 =
0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

Arbitrarily Initialized 
Embedding Matrix

Embedding для "cat" будет: 
{0.1,0.2,0.3}

Embedding, in the context of natural language processing and neural networks, is used to convert categorical data 
(e.g., words) into real number vectors that can be processed by a model, and vice versa.

In some architectures (e.g., OpenAI's GPT models), the matrix for Input Embedding and Output Embedding may be shared, which is 
one way to reduce the total number of parameters in the model.
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POSITIONAL ENCODING
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Positional Encoding in Transformers is used to provide information about the order of words or tokens in a 
sequence. Transformers are inherently order-insensitive, as they process inputs in parallel, so without adding 

any position information, the transformer model will not be able to take into account word order, which is critical 
for many NLP tasks
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Positional Encoding solves the problem of word positioning by adding additional signals to the input so that the model can take 
into account the order of the words in the sentence. Basic algorithm:

1. Adding Positional Encoding Vectors. A positional encoding vector of the same dimension is added to each input vector 
(after input embedding). In this way, the model receives information about both the content of the word (via input 
embedding) and its position in the sentence.

2. Positional Encoding (PE) : It is carried out with the help of the sine and cosine function.  For each pos position and each 
dimension i in the embedding vector, we find the values:

3. Item Accounting for Processing: After adding positional encoding, the vectors are passed to the transformer layers, 
where the model takes into account both the content of the words and their position in the sequence.

𝑃𝐸 𝑝𝑜𝑠, 2𝑖 = 𝑠𝑖𝑛
𝑝𝑜𝑠

10
4×

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

𝑃𝐸 𝑝𝑜𝑠, 2𝑖 + 1 = 𝑐𝑜𝑠
𝑝𝑜𝑠

10
4×

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

Here:
• 𝑝𝑜𝑠 – Position of the word in the sequence
• 𝑑𝑚𝑜𝑑𝑒𝑙  – Embedding Dimension
• 104 – Base of a hyperbolic function for frequency scaling 

(heuristic)
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FEED FORWARD
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In the Transformer model, the Feed Forward Neural Network (FFNN) is a component of each transformer layer 
and is a simple neural network that is applied to each position of the input sequence separately and 

independently
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ERS 3 Layer Feed-Forward Neural Network

Input Layer
Hidden Layer

Output Layer
Operation Scheme:
• Pointwise Transformation. The Feed Forward network is applied 

separately to each position in the sequence. This means that for each 
element (e.g., for each token or each word vector), the network 
performs the same operation.

• Operation. A typical Feed Forward network in a transformer consists 
of two linear transformations with nonlinear activation between them:

𝐹𝐹𝑁 𝑥 = max 0, 𝑥𝑊1 + 𝑏1 𝑊2 + 𝑏2

Здесь 𝑊1,𝑊2 ,𝑏1,𝑏2 – Network Settings, max(0, 𝑧) – Activation FunctionReLU

With Feed Forward, the network increases the presentation power of the 
transformer model, allowing it to learn from more complex aspects of the 
data, accounting for complex dependencies in the data. At the same time, 
FFNN, unlike multi-head attention, processes each position 
independently
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ADD AND NORM OPERATIONS
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The ADD & NORM operations yield what's known as addition, which eliminates the problem of a fading or exploding 
gradient, as well as normalization, which stabilizes the learning by bringing the outputs of each layer so that they 

have a zero mean and a single standard deviation
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In deep neural networks, the signal passes through many layers and can be significantly weakened (especially due to the contribution 
of the activation function) or, conversely, unpredictably amplified. This leads to unstable learning, and both non-saturation activation 
functions (such as ReLU) and various normalizations are used to combat the problem. In the transformer model:

• The ADD function is a residual connection and is applied to the output signal from the Multi-Head Attention or FFNN. 
The main mechanism is to add the output signal to the input signal before transferring it to the next layer:

• After the addition operation (ADD) and before the result is fed to the next layer, the normalization (NORM) of each 
element is performed individually:

𝑥′ = 𝐿𝑎𝑦𝑒𝑟 𝑥 + 𝑥
Here Layer(x) –  This is the result of the Attention or FFNN,
 x – input

𝑥′′ = 𝑁𝑜𝑟𝑚 𝑥′
Here 𝑁𝑜𝑟𝑚(𝑥’) – is a normalization function applied to the previous result x' 
after the Add operation:

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑥′𝑖 𝜎2 =
1

𝑛
෍

𝑖=1

𝑛

 (𝑥′𝑖 − 𝜇)2 ෝ𝑥𝑖 =
𝑥′𝑖 − 𝜇

𝜎2 + 𝜖
𝑥′′𝑖 = 𝛾 ො𝑥𝑖 + 𝛽

Вычисление среднего Вычисление дисперсии Собственно нормализация Масштабирование и сдвиг

ϵ — This is a small constant added for 
numerical stability (to avoid division by zero).

γ и β —scale and panning parameters that are trained with the rest 
of the model. These parameters allow the normalization layer to 

change the shape of the data distribution if needed to train the 
model efficiently.
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LINEAR LAYER
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A Linear Layer is the simplest type of layer in neural networks, where each input is connected to each output by a 
linear function. In the context of transformers, it is used to transform inputs by multiplying by weights and adding 

bias.

𝐼𝑛𝑝𝑢𝑡 𝑥
(𝑑𝑚𝑜𝑑𝑒𝑙× 1) 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑊
(𝑑𝑚𝑜𝑑𝑒𝑙× 𝑑𝑜𝑢𝑡) 

× 𝑊

𝐵𝑖𝑎𝑠 𝑏 
𝑑𝑜𝑢𝑡 × 1

+𝑏

𝑅𝑒𝐿𝑈(𝑦) 𝑂𝑢𝑡𝑝𝑢𝑡 𝑦
𝑑𝑜𝑢𝑡 × 1

Входной вектор Матрица весов

Вектор смещения

Результат

Окончательный 
результат

𝑦′

If the input of a line layer is a vector x, then the output y of that layer can be 
expressed as:

𝑦 = 𝑥𝑊 + 𝑏
Here, W is the weight matrix, b is the bias 
vector, and both parameters are trained with 
the model

• In the attention block, line layers are used to convert inputs into keys, queries, 
and values before passing them to the attention engine.

• In the FFNN block, line layers are used to transform the output from the 
attention engine. Typically, an FFNN contains two line layers with a nonlinear 
activation function between them.

• In the final part of the transformer model, a linear layer (often followed by 
softmax) is used to transform the model output into the probabilities of the 
next token in the sequence.

How it use in transformers:
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GENERAL TRANSFORMER ARCHITECTURE
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Transformers that implement LLM have a complex architecture, which consists of a first approximation of an 
encoder and a decoder (Encoder, Decoder). Both subsystems contain multiple layers. Each Encoder and 

Decoder layer has sublayers.

Embedding Layer

• Token Embeddings: Converts each word or token of the input text into a fixed-size vector. This is the first layer 
that receives the input data and converts it into a format suitable for the model.

• Positional Embeddings: Because Transformers don't have an internal idea of the order of words in a text, they 
need positional vectors to store information about the position of each word.

Encoder (for BERT models) or Decoder (for GPT models))
• Attention Layers: A key component of transformers that allows the model to take into account the context of 

all input text when processing each word. It consists of the vectors Q (Query), K (Key) and V (Value), as well 
as a mechanism for calculating attention weights.

• Feed-Forward Layers: These layers follow the layers of attention and are usually fully connected neural 
networks that are applied to each input position separately and in the same way.

• Normalization Layers: Layers to normalize the output of each sublayer (attention and perceptron) before 
passing it to the next layer.

• Residual Connections: Help avoid the problem of fading gradient in deep networks by adding the input of 
the previous layer to the output of the next layer.

Output & Classification

• Output layer: For models that predict the next word 
(as in GPT), the last layer is often a layer that converts 
the output of the last transformer layer back into a 
word vector space, where each element corresponds 
to the probability of the next word.

• Classification layer: For models that perform 
classification tasks (as in BERT), the output may be 
one or more layers that predict classes for the input 
data.

In specific implementations of transformers (BERT, GPT), depending on the model, 
only Encoder (BERT, focus on text understanding), only Decoder (GPT, focus on text 
generation), or both can be used. The main sublayers are:
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LIMITATIONS OF TRANSFORMERS ARCHITECTURE
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Transformers take a significant step forward by providing high-quality text generation and processing. At the same 
time, this architecture has a number of limitations, which are still being overcome.

16

High Compute Requirements: Training Transformers, especially 
large language models such as GPT-3 or BERT, requires significant 
computational resources, including powerful GPUs or even TPUs. 
This makes them less accessible to researchers or companies 
with limited resources.

Privacy concerns: Data processing for privacy-sensitive environments 
(e.g., finance and healthcare) requires not only accurate data 
generation, but also ensuring that the data provided does not contain 
information that identifies real users, which is difficult or impossible to 
integrate into the work of transformers due to centralization.

Limited processing of tabular and numeric data: Transformers are 
optimized for working with sequences and text data, where context 
and semantic connections are important. Numerical data in tables, 
such as transaction data, balances, customer ages, etc., are of a 
completely different nature.

Problems with long sequences: Transformers use an attentional 
mechanism to process each element of the sequence in the 
context of all other elements. This results in a quadratic increase in 
the number of calculations and memory consumption relative to 
the length of the sequence.

No time component: Many tasks require consideration of temporal 
dependencies (for example, the sequence of transactions or the 
history of communication with the client). Transformers do not 
include components for time series analysis by default, unlike 
models that focus on temporal data, such as RNN or LSTM.

Bias and Ethical Issues: Transformers are trained on data that 
may contain biased or unwanted information. Models can adopt 
and amplify these biases, which can lead to biased or incorrect 
texts.
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PROMISING AREAS
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The architecture of transformers continues to be the subject of intense research and development. Scientists and 
engineers are constantly looking for ways to improve, optimize, and expand the capabilities of Transformers.
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• Sparse transformers (reduce computational complexity)
• Optimization of attention mechanisms

EFFICIENCY AND SCALE

• Multimodal transformers (work simultaneously with text, 
images, sound)

• Universal language models (not requiring retraining for the task)

VERSATILITY AND MULTIMODALITY

• Differential Privacy
• Eco-friendly and energy efficient

PRIVACY & SUSTAINABILITY

Developing methods and tools to better understand and 
interpret how Transformers make decisions and what 

underpins their predictions.

INTERPRETABILITY AND TRANSPARENCY
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TRANSFORMERS INFRASTRUCTURE
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Transformers take a significant step forward by providing high-quality text generation and processing. At the same 
time, this architecture has several limitations, which are still being overcome.
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4

1 Basic Libraries and Frameworks
• Hugging Face's Transformers: One of the most popular 

libraries for working with Transformers. Provides pre-trained 
models, integration with TensorFlow and PyTorch.

• TensorFlow и PyTorch: The two main libraries for deep 
learning that are used to build, train, and deploy 
transformer models.

2 LLM Models

3 Repositories & Communities

• Hugging Face's Model Hub: A platform for sharing and 
using pre-trained transformers models. Users can 
upload their own models and use models provided by 
the community.

• Google's TensorFlow Model Garden:  A repository 
from Google containing implementations of various 
machine learning models, including transformers-
based models.

• Google TPUs (Tensor Processing Units): Google's purpose-built coprocessors 
optimized for machine learning.

• NVIDIA GPUs: NVIDIA GPUs widely used to train neural networks.

• LLM Mesh: Infrastructure Solutions for Efficient Scaling and Deployment of 
Large Language Models.

• Forks & Extensions: There are many forks and extensions of the core libraries 
that make additions, optimizations, or specialized solutions for specific tasks 
or requirements.

Computing Projects & Solutions
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• Large Models: GPT-4 (OpenAI, 1.7 Tr), 
Jurassic-1 (AI21, 178 B), Megatron-Turing 
NLG(Nvidia+ MS, 530 B), Switch Transformer 
(Google, 1/6 Tr), Gopher (DeepMind, 280 Tr)

• Small Models: GPT-2 (OpenAI, 1.5 B), BERT 
(Google, 340 M), T5 (Google, 11 B)
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Here, as an illustration, we consider the simplest example of using GPT-2 to generate e-mail using a given 
username.
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This example shows how to run the GPT-2 model (free to 
use) to generate an e-mail address for a selected user's full 
name

1. The model is loaded in advance, then a "prompt" is used 
for practical work. The quality of the propmpt, as well as 
parameters such as temperature, affect the output of the 
result.

2. To run on-premises, a Python VM must be configured, and 
the necessary packages must be added using the pip 
manager (in this case, PyTorch and tranformers)

3. To work successfully, you need the correct version of 
CUDA for the GPU, a sufficient amount of RAM (RAM from 
16 GB

INPUT: Ivan Petrov

OUTPUT:
What is the email address of 
Ivan Petrov? The email 
address is: 
Ivan.Petrov@gmail.com
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APPENDIX



LLM MODELS
MODEL VENDOR LICENSE ARCHITECTURE 

FEATURES APPLICATION RESTRICTIONS

GPT-3
175 B

OpenAI Paid, via OpenAI API

175 billion 
parameters, 
autoregressive 
model

Text generation, 
translation, 
answering 
questions, etc.

API access, high 
cost of use

BERT
340 M

Google Open License

Двунаправленный 
механизм 
внимания, до 340 
миллионов 
параметров

Comprehension, 
classification, Q&A

Resource-intensive 
when teaching

RoBERTa Facebook AI Open License

BERT Pre-Training 
Optimization, More 
Data and Longer 
Training

Comprehension, 
classification, Q&A

Similar to BERT, it 
requires significant 
resources

T5
11 B

Google Open License

Trained on text-to-
text translation 
tasks, up to 11 
billion parameters

Text generation, 
translation, 
classification, etc.

Resource-intensive 
when teaching

XLNet Google/CMU Open License
Combination of 
autoregressive and 
autoencoder models

Comprehension, 
classification, filling 
in the blanks

Difficult to 
understand and 
implement

GPT-2
1.5 B

OpenAI Open License
Predecessor of GPT-
3, up to 1.5 billion 
parameters

Text Generation, 
Preliminary Models 
for Research

Less power 
compared to GPT-3
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TRANSFORMER ARCHITECTURE

Input 
Embedding

Multi-Head 
Attention Add & Norm Feed Forward Add & Norm

Output 
Embedding

Masked
Multi-Head 

Attention
Add & Norm Add & NormMulti-Head 

Attention
Feed Forward Add & Norm Linear

Softmax

Output Probabilities

Residual Connections
(allows you to add an input signal to the output signal 
after each sublayer to eliminate vanishing gradient)

The decoder uses a masked Multi-Head Attention mechanism to generate an output sequence one element at a time, starting with a special 
sequence start character. The masked attention mechanism prevents the decoder from looking into the future, that is, from using information 
from elements that have not yet been generated.

Inputs

Outputs
(shifted right)

Nx Layers

Nx Layers

Positional 
Encoding

Positional 
Encoding

ENCODER:

• Encoder Self-Attention
• Feed-Forward Network

DECODER: 

• Masked Decoder Self-Attention
• Encoder-Decoder Attention
• Feed-Forward Network.

ENCODER:

DECODER:
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EXAMPLE OF LAUNCHING A TRANSFORMER
import torch

import re

from transformers import GPT2LMHeadModel, GPT2Tokenizer

# Load the tokenizer and model

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

model = GPT2LMHeadModel.from_pretrained('gpt2')

def generate_email(name, model, tokenizer):

  input_sequence = f"What is the email address of {name}? The email address is"

  

  input_ids = tokenizer.encode(input_sequence, return_tensors='pt')

  attention_mask = torch.ones(input_ids.shape)

  

  # Ensure the model is in evaluation mode

  model.eval()

  

  # Generate subsequent tokens

  with torch.no_grad():

    output = model.generate(

      input_ids,

      max_length=50,

      num_return_sequences=1,

      no_repeat_ngram_size=2,

      early_stopping=True,

      num_beams=5, # Use Beam Search with 5 beams

      do_sample=True, # Enable sample-based generation

      temperature=0.7, # Set the temperature

      attention_mask=attention_mask, # Set the attention_mask

      pad_token_id=tokenizer.eos_token_id

    )

  

  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

  return generated_text

# Use the function to generate an e-mail

name = "Ivan Petrov"

email = generate_email(name, model, tokenizer)

print(email)

# Use regular expression to search for e-mail

email_match = re.search(r'[\w\.-]+@[\w\.-]+', email)

if email_match:

  final_email = email_match.group(0)

  print(final_email)

else:

  print("E-mail not found.")

• max_length (set to 50): Specifies the maximum length of the sequence to be 
generated.

• num_return_sequences (set to 1): The number of generated sequences returned. In 
this case, it is configured to generate only one sequence.

• no_repeat_ngram_size (set to 2): This parameter is used to ensure that the model 
does not repeat the same n-grams. Here, it is set to 2, which means that the model 
should avoid repeating the same 2-grams.

• early_stopping (set to True): If set to True, creation will stop as soon as the end-of-
sequence marker is predicted.

• num_beams (set to 5): This is to find the beam. A higher number means that the 
model will account for more possibilities at each stage, potentially leading to better 
results but slower generation.

• do_sample (set to True): This allows for stochastic sampling, which means that the 
model will select different tokens based on probabilities, resulting in more diverse 
outputs.

• temperature (set to 0.7): This parameter controls the randomness of the output. A 
lower temperature results in fewer random completions, and a higher temperature 
increases randomness.

• pad_token_id: Specifies a marker to complete sequences. Here, it is set to the 
marker end-of-sequence token ID of the marker creator.

To run the model, you need to configure its parameters 
that determine the output:
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