
TRANSFORMERS Large Language Models, Their
Capabilities and Limitations

2025-02-15

TRAN
SFO

RM
ERS

2

Automation of all routine work?

Will he write a PhD for me?

Will it replace all other AIs?

AND HOW DO THESE TRANSFORMERS WORK?

Is mass unemployment looming?

Unsupervised AI?

AI Spy?

Rewind with solid fill Rewind with solid fill

TRANSFORMERS, GPT, AND EVEN MORE

AI – REVOLUTION AND SUPERIORITY OF TRANSFORMERS

2025-02-15
TRAN

SFO
RM

ERS

3

AI Explosive Growth: Recently, AI has become a deafening trend, transforming industries and enriching our day-to-day
experiences. From image recognition technologies to autonomous driving, AI has established itself as a key driver of
innovation.

New horizons of AI application: Every day brings news of breakthroughs in AI, expanding its applications from finding
new drugs to analyzing composite materials. Systems like ChatGPT demonstrate the ability to not only create essays and
program code, but also to conduct intelligent dialogues to help make sense of complex issues.

Rethinking NLP and Growing Faith in Technology: Admiration for AI's achievements leads to a new kind of faith in the
technology. Startups are looking to replicate the success of OpenAI by reimagining the use of NLP in everyday life.
Investors, having forgotten about blockchain and META universes, are now looking for revolutionary opportunities in AI.

Purpose : Explain the current status of transformers technology, understand their real capabilities and limitations. To
present to a wide range of specialists and users how AI and transformers can be used in various industries, emphasizing
their impact on the future of the industry and society.

Transformers are a powerful new way of representing natural language that can capture long-range dependencies and
complex relationships. They have enabled us to make significant advances in natural language understanding, generation,

and translation
Sundar Pichai, CEO of Google

Rewind with solid fill Rewind with solid fill

WHAT ARE TRANSFORMERS?

2025-02-15
TRAN

SFO
RM

ERS

4

Transformers in the context of Natural Language Processing (NLP) are a type of deep learning model
architecture in AI specifically designed to work with data sequences such as text

The name "transformers" comes from the key mechanism behind these models, the "attention" mechanism, which allows the model
to "transform" input data (e.g., text) into a higher-level internal representation.

Transformers are often associated with Large Language Models (LLMs), such as GPT and BERT, which often use the architecture of
Transformers, but are scaled to a very large number of parameters, allowing them to better understand and generate natural
language. Feature of Transformers:

Sequence Processing: Transformers are able to process words (or other elements) in a sentence not sequentially but in parallel, making
them very efficient and fast at learning and predicting.

Attention Mechanism: The main component of transformers is the attention mechanism, which allows the model to focus on different
parts of the input data depending on the task. For example, when translating a sentence, the model can synchronously take into account the
context of the entire sentence rather than processing each word individually.
This helps the model understand the context and semantic relationships between words in the text.

Scalability: Transformers scale well due to their ability to handle large amounts of data and the complexity of models. They can be trained on
huge corpora of text and are capable of generating, classifying, translating, and performing a variety of other tasks at a high level.

TRANSFORMERS EXAMPLES
GPT (Generative Pre-trained Transformer): a series of
models (GPT-2, GPT-3) that are capable of generating text, answering
questions, translating texts, and more.

BERT (Bidirectional Encoder Representations from
Transformers): Understanding the context and relationships in the text,
used for text classification, sentiment analysis, information extraction, and
answering questions. Rewind with solid fill Rewind with solid fill

LLM DEVELOPMENT TIMELINE

2025-02-15
TRAN

SFO
RM

ERS

5

As the market evolves, competition increases, the scale of models grows and computational costs increase at
the same time, despite significant progress in the development of LLMs, there are relatively few publicly

available services based on them, the sector is still at the stage of searching for effective and sustainable
business models

Google researchers (Vaswani,...) presented the
revolutionary "Transformer" architecture in the
article "Attention is All You Need". This was a
significant breakthrough, allowing models to
process data sequences in parallel and more
efficiently

2018

2019

2020

2021

2022

2023

2024

ELMo (94 m)

GPT (117 m)

BERT (100-340 m)

GPT-2 (1.5 B)

T5: text-to-text
 (11 B)

GPT-3 (175 B)

BLOOM:
HuggingFace+ (60 b)

LLAMA (7 B)

GPT-4 (1 Tr)

Olympus (2 Tr)
GPT-5 (~17 Tr)

NeMO (8.3 B)
XLNet (512 m)

Google introduced BERT, a pioneering
approach to pre-training language
representations. BERT used a
bidirectional context to understand
the text, which greatly improved the
results of the set of texts.

OpenAI released GPT using a transformer
architecture to create a powerful pre-
trained language model. GPT has shown
impressive results in generating coherent
and persuasive texts.

OpenAI introduced GPT-2, significantly improving and
expanding the capabilities of its previous model. GPT-2
has raised concerns about its potential use to create
disinformation, highlighting the need for responsible
use of AI.

OpenAI has released GPT-3, a 175-billion-parameter model that has set
new standards for language models for the quality of text generation and
the ability to learn with minimal interference.

Amazon Olympus has not yet been officially released, and
there is no exact date for its launch. However, Amazon is
rumored to have started training this model in 2023 and plans
to integrate it into its Alexa voice assistant. Olympus has 2
trillion parameters, which is more than any other LLM currently
being trained.

Rewind with solid fill Rewind with solid fill

TRANSFORMERS AND OTHER ARCHITECTURES

2025-02-15
TRAN

SFO
RM

ERS

Transformers are an architecture of neural networks focused on working with sequential data – text strings.
However, this architecture differs from the RNN (Recurrent Neural Networks) and LSTM (Long Short-Term

Memory) architectures, which are similar in terms of the processed data

6

• Parallel Processing: Transformers can process all words (or
other elements of a sequence) at the same time, so they can
quickly work with large amounts of data.

• The Mechanism of Attention: Transformers use an attentional
mechanism to determine the relationships between all the
words in a sentence, which allows the model to better grasp
the context and meaning of the text.

• No feedback loops: Transformers don't have feedback loops
like RNNs and LSTMs, making them less prone to disappearing
and exploding gradient issues and simplifying the learning
process.

• Sequential processing: RNNs process data
sequentially, passing information from one step to
the next, which can slow down the processing of
large amounts of data.

• Feedback loops: RNNs have feedback loops,
which allows them to retain information about
previous steps, but also makes them vulnerable to
problems with fading and exploding gradients.

• LSTM - Improved Version of RNN: LSTM is a special
type of RNN designed to solve the problem of
vanishing gradient by using structures called
"memory cells".

These cells allow the model to retain
information for long periods of time and learn
more effectively from data with long
dependencies

TRANSFORMERS RNN & LTSM

Rewind with solid fill Rewind with solid fill

STANDARD ATTENTION MECHANISM

2025-02-15

7

The attention mechanism in transformers is a key element of their architecture, allows the model to focus on
certain parts of the input data (for example, words in a sentence) to perform a specific task, provides weighting

of the importance of a word, creating combinations, and parallel text processing

*) The attention mechanism was proposed somewhat earlier than the full-fledged architecture of transformers. One of the key moments in the development of the attention
mechanism was in 2014, when the "Neural Machine Translation with Attention" model was introduced by Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

The central components of the attention mechanism in the Transformer architecture* are the vectors Q (Query), K (Key), and V (Value).
They are used so that the model can determine which parts of the input data to pay attention to when performing the task:

• Each word (or other unit of data) in the input
sequence is transformed into three vectors 𝑞, 𝑘,
𝑣, which are packaged into aggregate matrices 𝑄,
𝐾, and 𝑉. These transformations are performed
using three different sets of trained weights.

• The Query vector (Q) is associated with the
current word for which attention is calculated.

• The Key (K) and Value (V) vectors are associated
with all words in the input sequence (including the
current word).

• For each pair of Query and Key, a measure of
similarity is determined, computed through the
dot product between Q and K.

• The resulting similarity values are then scaled
and normalized using the softmax function to
get the attention weights, which are summed up
in 1.

• Attention weights are multiplied by
the corresponding Value vectors: the
greater the attention weight of a word,
the greater the contribution of its
Value vector to the output.

• The Value vectors are then summed
to form a weighted sum, which
becomes the output for the current
word.𝑒𝐪,𝐤𝑖

= 𝐪 ⋅ 𝐤𝑖

𝛼𝐪,𝐤𝑖
= softmax(𝑒𝐪,𝐤𝑖

) attention(𝐪, 𝐊, 𝐕) = ෍

𝑖

𝛼𝐪,𝐤𝑖
𝐯𝐤𝑖

{𝑄, 𝐾, 𝑉}

1. VECTOR SELECTION 2. ATTENTION WEIGHTS 3. WEIGHTED AMOUNT

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑖 =
𝑒𝑧𝑖

σ𝑗=1
𝐾 𝑒𝑧𝑗

Rewind with solid fill Rewind with solid fill

MULTI-HEAD ATTENTION

2025-02-15

8

WIDENING THE FIELD OF VISION: Instead of having a single set of attentional weights (as in the standard
attentional mechanism), the multi-headed attentional mechanism has multiple sets of weights, each of which

is trained to pick up on different aspects of information. This allows the model to process information from
different angles at the same time.

TRAN
SFO

RM
ERS

The input data is divided into several
"heads" of attention. For example, if the
dimension of the input vector is 512 and 8
heads are used, each head will have a
dimension of 64 Each head applies the attentional

mechanism (using its own sets of
weights Q, K, V) independently of the
others, extracting different aspects of
information from the input data The outputs of all the attention heads

are then concatenated into a single
vector that has an initial dimension (in
our example, 512).

The concatenated vector
passes through the line layer
to align the dimensionality with
the dimension of the input
layer and integrate the
information from all the heads

Separation into heads

Applying Attention
Independently

Output
concatenation

Linear transformation

The multi-head attention mechanism has significant advantages (and is the main base for the success of transformers):
Improved understanding of context (taking into account information from different levels of abstraction)
Concurrency and efficiency (each "head" works independently, which makes it possible to do parallel calculations)
Rich representation of the data (this mechanism allows the model to capture different aspects of the data)

Rewind with solid fill Rewind with solid fill

MASKED MULTI-HEAD ATTENTION

2025-02-15

9

In the Transformer model, the term "masked multi-head attention" refers to a special version of the multi-head
attention mechanism that prevents information from "leaking" from future tokens when processing each token

in the sequence.

TRAN
SFO

RM
ERS

• Self-attention, sometimes referred to as internal attention, is a mechanism that allows a
transformer model to process and encode a sequence of inputs, taking into account the
dependencies between all tokens in that sequence. Unlike traditional recurrent neural
networks (RNNs), self-attention allows the model to consider all sequence positions at once,
making the process more efficient and eliminating long-distance communication issues.

• Masked Attention. In the context of Transformer, "masking" means that when calculating
self-attention for a given token, the model does not take into account (or "does not see")
subsequent tokens in the sequence. This is achieved by applying a mask to the attention
scores before applying softmax.

• Masking Order:
o The model is trained to generate text, and is currently processing the word at position i.
o To predict the next word at position i+1, the model should only use information from positions 1

before i and should not have access to information from positions i+1 onwards.
o Masked multi-head attention accomplishes this by applying a mask to the attention values in

such a way that any "future" tokens (after i) are not counted.

0 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 0 −𝑖𝑛𝑓
0 0 0 0

• First Line of Mask: When processing the
first token, the model can only consider
information about the first token.

• Second line of the mask: allows you to
take into account the information about
the first and second tokens when
processing the second token,

• … ….

• Values of −inf block "looking into the
future", since after using softmax,
tokens corresponding to such values
will receive very little weight.

Rewind with solid fill Rewind with solid fill

For a sequence of 4 tokens
(when the last token is

generated):

INPUT/OUTPUT EMBEDDING

2025-02-15

10

Embedding mechanisms allow you to perform transformations between words and vectors. For Input
Embedding, it is the conversion of input words (tokens) into fixed-size vectors, and for Output Embedding, the

output (in the form of vectors with the probabilities of the next word) is converted back to words

TRAN
SFO

RM
ERS

• Token encoding. It is carried out by assigning indexes to each unique word in the dictionary.
For example, you can build a dictionary{′𝑐𝑎𝑡′: 0, ′𝑑𝑜𝑔′: 1, ′𝑓𝑖𝑠ℎ′: 2}.

• Using the Embedding Matrix. Creates a matrix of size E [𝑣𝑜𝑐𝑎𝑏_𝑠𝑖𝑧𝑒, 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_dim],
here 𝑣𝑜𝑐𝑎𝑏_𝑠𝑖𝑧𝑒 — This is the size of the dictionary and embedding_dim is the dimension of the
vector space in which the words are embedded. The elements of the E matrix are initialized
with random numbers and then trained in conjunction with other model parameters.

• Converting Words to Vectors. For a word with an index𝑖, its embedding (vector representation)
is obtained as the i-th line of the matrix E. This can be expressed as 𝑣 = 𝐸[𝑖].

𝐸 =
0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

Arbitrarily Initialized
Embedding Matrix

Embedding для "cat" будет:
{0.1,0.2,0.3}

Embedding, in the context of natural language processing and neural networks, is used to convert categorical data
(e.g., words) into real number vectors that can be processed by a model, and vice versa.

In some architectures (e.g., OpenAI's GPT models), the matrix for Input Embedding and Output Embedding may be shared, which is
one way to reduce the total number of parameters in the model.

Rewind with solid fill Rewind with solid fill

POSITIONAL ENCODING

2025-02-15

11

Positional Encoding in Transformers is used to provide information about the order of words or tokens in a
sequence. Transformers are inherently order-insensitive, as they process inputs in parallel, so without adding

any position information, the transformer model will not be able to take into account word order, which is critical
for many NLP tasks

TRAN
SFO

RM
ERS

Positional Encoding solves the problem of word positioning by adding additional signals to the input so that the model can take
into account the order of the words in the sentence. Basic algorithm:

1. Adding Positional Encoding Vectors. A positional encoding vector of the same dimension is added to each input vector
(after input embedding). In this way, the model receives information about both the content of the word (via input
embedding) and its position in the sentence.

2. Positional Encoding (PE) : It is carried out with the help of the sine and cosine function. For each pos position and each
dimension i in the embedding vector, we find the values:

3. Item Accounting for Processing: After adding positional encoding, the vectors are passed to the transformer layers,
where the model takes into account both the content of the words and their position in the sequence.

𝑃𝐸 𝑝𝑜𝑠, 2𝑖 = 𝑠𝑖𝑛
𝑝𝑜𝑠

10
4×

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

𝑃𝐸 𝑝𝑜𝑠, 2𝑖 + 1 = 𝑐𝑜𝑠
𝑝𝑜𝑠

10
4×

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

Here:
• 𝑝𝑜𝑠 – Position of the word in the sequence
• 𝑑𝑚𝑜𝑑𝑒𝑙 – Embedding Dimension
• 104 – Base of a hyperbolic function for frequency scaling

(heuristic)

Rewind with solid fill Rewind with solid fill

FEED FORWARD

2025-02-15

12

In the Transformer model, the Feed Forward Neural Network (FFNN) is a component of each transformer layer
and is a simple neural network that is applied to each position of the input sequence separately and

independently

TRAN
SFO

RM
ERS 3 Layer Feed-Forward Neural Network

Input Layer
Hidden Layer

Output Layer
Operation Scheme:
• Pointwise Transformation. The Feed Forward network is applied

separately to each position in the sequence. This means that for each
element (e.g., for each token or each word vector), the network
performs the same operation.

• Operation. A typical Feed Forward network in a transformer consists
of two linear transformations with nonlinear activation between them:

𝐹𝐹𝑁 𝑥 = max 0, 𝑥𝑊1 + 𝑏1 𝑊2 + 𝑏2

Здесь 𝑊1,𝑊2 ,𝑏1,𝑏2 – Network Settings, max(0, 𝑧) – Activation FunctionReLU

With Feed Forward, the network increases the presentation power of the
transformer model, allowing it to learn from more complex aspects of the
data, accounting for complex dependencies in the data. At the same time,
FFNN, unlike multi-head attention, processes each position
independently

Rewind with solid fill Rewind with solid fill

ADD AND NORM OPERATIONS

2025-02-15

13

The ADD & NORM operations yield what's known as addition, which eliminates the problem of a fading or exploding
gradient, as well as normalization, which stabilizes the learning by bringing the outputs of each layer so that they

have a zero mean and a single standard deviation

TRAN
SFO

RM
ERS

In deep neural networks, the signal passes through many layers and can be significantly weakened (especially due to the contribution
of the activation function) or, conversely, unpredictably amplified. This leads to unstable learning, and both non-saturation activation
functions (such as ReLU) and various normalizations are used to combat the problem. In the transformer model:

• The ADD function is a residual connection and is applied to the output signal from the Multi-Head Attention or FFNN.
The main mechanism is to add the output signal to the input signal before transferring it to the next layer:

• After the addition operation (ADD) and before the result is fed to the next layer, the normalization (NORM) of each
element is performed individually:

𝑥′ = 𝐿𝑎𝑦𝑒𝑟 𝑥 + 𝑥
Here Layer(x) – This is the result of the Attention or FFNN,
 x – input

𝑥′′ = 𝑁𝑜𝑟𝑚 𝑥′
Here 𝑁𝑜𝑟𝑚(𝑥’) – is a normalization function applied to the previous result x'
after the Add operation:

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑥′𝑖 𝜎2 =
1

𝑛
෍

𝑖=1

𝑛

 (𝑥′𝑖 − 𝜇)2 ෝ𝑥𝑖 =
𝑥′𝑖 − 𝜇

𝜎2 + 𝜖
𝑥′′𝑖 = 𝛾 ො𝑥𝑖 + 𝛽

Вычисление среднего Вычисление дисперсии Собственно нормализация Масштабирование и сдвиг

ϵ — This is a small constant added for
numerical stability (to avoid division by zero).

γ и β —scale and panning parameters that are trained with the rest
of the model. These parameters allow the normalization layer to

change the shape of the data distribution if needed to train the
model efficiently.

Rewind with solid fill Rewind with solid fill

LINEAR LAYER

2025-02-15

14

TRAN
SFO

RM
ERS

A Linear Layer is the simplest type of layer in neural networks, where each input is connected to each output by a
linear function. In the context of transformers, it is used to transform inputs by multiplying by weights and adding

bias.

𝐼𝑛𝑝𝑢𝑡 𝑥
(𝑑𝑚𝑜𝑑𝑒𝑙× 1)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑊
(𝑑𝑚𝑜𝑑𝑒𝑙× 𝑑𝑜𝑢𝑡)

× 𝑊

𝐵𝑖𝑎𝑠 𝑏
𝑑𝑜𝑢𝑡 × 1

+𝑏

𝑅𝑒𝐿𝑈(𝑦) 𝑂𝑢𝑡𝑝𝑢𝑡 𝑦
𝑑𝑜𝑢𝑡 × 1

Входной вектор Матрица весов

Вектор смещения

Результат

Окончательный
результат

𝑦′

If the input of a line layer is a vector x, then the output y of that layer can be
expressed as:

𝑦 = 𝑥𝑊 + 𝑏
Here, W is the weight matrix, b is the bias
vector, and both parameters are trained with
the model

• In the attention block, line layers are used to convert inputs into keys, queries,
and values before passing them to the attention engine.

• In the FFNN block, line layers are used to transform the output from the
attention engine. Typically, an FFNN contains two line layers with a nonlinear
activation function between them.

• In the final part of the transformer model, a linear layer (often followed by
softmax) is used to transform the model output into the probabilities of the
next token in the sequence.

How it use in transformers:

Rewind with solid fill Rewind with solid fill

GENERAL TRANSFORMER ARCHITECTURE

2025-02-15

15

TRAN
SFO

RM
ERS

Transformers that implement LLM have a complex architecture, which consists of a first approximation of an
encoder and a decoder (Encoder, Decoder). Both subsystems contain multiple layers. Each Encoder and

Decoder layer has sublayers.

Embedding Layer

• Token Embeddings: Converts each word or token of the input text into a fixed-size vector. This is the first layer
that receives the input data and converts it into a format suitable for the model.

• Positional Embeddings: Because Transformers don't have an internal idea of the order of words in a text, they
need positional vectors to store information about the position of each word.

Encoder (for BERT models) or Decoder (for GPT models))
• Attention Layers: A key component of transformers that allows the model to take into account the context of

all input text when processing each word. It consists of the vectors Q (Query), K (Key) and V (Value), as well
as a mechanism for calculating attention weights.

• Feed-Forward Layers: These layers follow the layers of attention and are usually fully connected neural
networks that are applied to each input position separately and in the same way.

• Normalization Layers: Layers to normalize the output of each sublayer (attention and perceptron) before
passing it to the next layer.

• Residual Connections: Help avoid the problem of fading gradient in deep networks by adding the input of
the previous layer to the output of the next layer.

Output & Classification

• Output layer: For models that predict the next word
(as in GPT), the last layer is often a layer that converts
the output of the last transformer layer back into a
word vector space, where each element corresponds
to the probability of the next word.

• Classification layer: For models that perform
classification tasks (as in BERT), the output may be
one or more layers that predict classes for the input
data.

In specific implementations of transformers (BERT, GPT), depending on the model,
only Encoder (BERT, focus on text understanding), only Decoder (GPT, focus on text
generation), or both can be used. The main sublayers are:

Rewind with solid fill Rewind with solid fill

LIMITATIONS OF TRANSFORMERS ARCHITECTURE

2025-02-15
TRAN

SFO
RM

ERS

Transformers take a significant step forward by providing high-quality text generation and processing. At the same
time, this architecture has a number of limitations, which are still being overcome.

16

High Compute Requirements: Training Transformers, especially
large language models such as GPT-3 or BERT, requires significant
computational resources, including powerful GPUs or even TPUs.
This makes them less accessible to researchers or companies
with limited resources.

Privacy concerns: Data processing for privacy-sensitive environments
(e.g., finance and healthcare) requires not only accurate data
generation, but also ensuring that the data provided does not contain
information that identifies real users, which is difficult or impossible to
integrate into the work of transformers due to centralization.

Limited processing of tabular and numeric data: Transformers are
optimized for working with sequences and text data, where context
and semantic connections are important. Numerical data in tables,
such as transaction data, balances, customer ages, etc., are of a
completely different nature.

Problems with long sequences: Transformers use an attentional
mechanism to process each element of the sequence in the
context of all other elements. This results in a quadratic increase in
the number of calculations and memory consumption relative to
the length of the sequence.

No time component: Many tasks require consideration of temporal
dependencies (for example, the sequence of transactions or the
history of communication with the client). Transformers do not
include components for time series analysis by default, unlike
models that focus on temporal data, such as RNN or LSTM.

Bias and Ethical Issues: Transformers are trained on data that
may contain biased or unwanted information. Models can adopt
and amplify these biases, which can lead to biased or incorrect
texts.

Rewind with solid fill Rewind with solid fill

PROMISING AREAS

2025-02-15

The architecture of transformers continues to be the subject of intense research and development. Scientists and
engineers are constantly looking for ways to improve, optimize, and expand the capabilities of Transformers.

TRAN
SFO

RM
ERS

17

• Sparse transformers (reduce computational complexity)
• Optimization of attention mechanisms

EFFICIENCY AND SCALE

• Multimodal transformers (work simultaneously with text,
images, sound)

• Universal language models (not requiring retraining for the task)

VERSATILITY AND MULTIMODALITY

• Differential Privacy
• Eco-friendly and energy efficient

PRIVACY & SUSTAINABILITY

Developing methods and tools to better understand and
interpret how Transformers make decisions and what

underpins their predictions.

INTERPRETABILITY AND TRANSPARENCY

Rewind with solid fill Rewind with solid fill

TRANSFORMERS INFRASTRUCTURE

2025-02-15
TRAN

SFO
RM

ERS

Transformers take a significant step forward by providing high-quality text generation and processing. At the same
time, this architecture has several limitations, which are still being overcome.

18

4

1 Basic Libraries and Frameworks
• Hugging Face's Transformers: One of the most popular

libraries for working with Transformers. Provides pre-trained
models, integration with TensorFlow and PyTorch.

• TensorFlow и PyTorch: The two main libraries for deep
learning that are used to build, train, and deploy
transformer models.

2 LLM Models

3 Repositories & Communities

• Hugging Face's Model Hub: A platform for sharing and
using pre-trained transformers models. Users can
upload their own models and use models provided by
the community.

• Google's TensorFlow Model Garden: A repository
from Google containing implementations of various
machine learning models, including transformers-
based models.

• Google TPUs (Tensor Processing Units): Google's purpose-built coprocessors
optimized for machine learning.

• NVIDIA GPUs: NVIDIA GPUs widely used to train neural networks.

• LLM Mesh: Infrastructure Solutions for Efficient Scaling and Deployment of
Large Language Models.

• Forks & Extensions: There are many forks and extensions of the core libraries
that make additions, optimizations, or specialized solutions for specific tasks
or requirements.

Computing Projects & Solutions

Rewind with solid fill Rewind with solid fill

• Large Models: GPT-4 (OpenAI, 1.7 Tr),
Jurassic-1 (AI21, 178 B), Megatron-Turing
NLG(Nvidia+ MS, 530 B), Switch Transformer
(Google, 1/6 Tr), Gopher (DeepMind, 280 Tr)

• Small Models: GPT-2 (OpenAI, 1.5 B), BERT
(Google, 340 M), T5 (Google, 11 B)

PRACTICAL USE

2025-02-15
TRAN

SFO
RM

ERS

Here, as an illustration, we consider the simplest example of using GPT-2 to generate e-mail using a given
username.

19

This example shows how to run the GPT-2 model (free to
use) to generate an e-mail address for a selected user's full
name

1. The model is loaded in advance, then a "prompt" is used
for practical work. The quality of the propmpt, as well as
parameters such as temperature, affect the output of the
result.

2. To run on-premises, a Python VM must be configured, and
the necessary packages must be added using the pip
manager (in this case, PyTorch and tranformers)

3. To work successfully, you need the correct version of
CUDA for the GPU, a sufficient amount of RAM (RAM from
16 GB

INPUT: Ivan Petrov

OUTPUT:
What is the email address of
Ivan Petrov? The email
address is:
Ivan.Petrov@gmail.com

Rewind with solid fill Rewind with solid fill

THANK YOU

TRAN
SFO

RM
ERS

20

APPENDIX

LLM MODELS
MODEL VENDOR LICENSE ARCHITECTURE

FEATURES APPLICATION RESTRICTIONS

GPT-3
175 B

OpenAI Paid, via OpenAI API

175 billion
parameters,
autoregressive
model

Text generation,
translation,
answering
questions, etc.

API access, high
cost of use

BERT
340 M

Google Open License

Двунаправленный
механизм
внимания, до 340
миллионов
параметров

Comprehension,
classification, Q&A

Resource-intensive
when teaching

RoBERTa Facebook AI Open License

BERT Pre-Training
Optimization, More
Data and Longer
Training

Comprehension,
classification, Q&A

Similar to BERT, it
requires significant
resources

T5
11 B

Google Open License

Trained on text-to-
text translation
tasks, up to 11
billion parameters

Text generation,
translation,
classification, etc.

Resource-intensive
when teaching

XLNet Google/CMU Open License
Combination of
autoregressive and
autoencoder models

Comprehension,
classification, filling
in the blanks

Difficult to
understand and
implement

GPT-2
1.5 B

OpenAI Open License
Predecessor of GPT-
3, up to 1.5 billion
parameters

Text Generation,
Preliminary Models
for Research

Less power
compared to GPT-3

Arrow: Horizontal U-turn with solid fill

TRANSFORMER ARCHITECTURE

Input
Embedding

Multi-Head
Attention Add & Norm Feed Forward Add & Norm

Output
Embedding

Masked
Multi-Head

Attention
Add & Norm Add & NormMulti-Head

Attention
Feed Forward Add & Norm Linear

Softmax

Output Probabilities

Residual Connections
(allows you to add an input signal to the output signal
after each sublayer to eliminate vanishing gradient)

The decoder uses a masked Multi-Head Attention mechanism to generate an output sequence one element at a time, starting with a special
sequence start character. The masked attention mechanism prevents the decoder from looking into the future, that is, from using information
from elements that have not yet been generated.

Inputs

Outputs
(shifted right)

Nx Layers

Nx Layers

Positional
Encoding

Positional
Encoding

ENCODER:

• Encoder Self-Attention
• Feed-Forward Network

DECODER:

• Masked Decoder Self-Attention
• Encoder-Decoder Attention
• Feed-Forward Network.

ENCODER:

DECODER:

Arrow: Horizontal U-turn with solid fill

EXAMPLE OF LAUNCHING A TRANSFORMER
import torch

import re

from transformers import GPT2LMHeadModel, GPT2Tokenizer

Load the tokenizer and model

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

model = GPT2LMHeadModel.from_pretrained('gpt2')

def generate_email(name, model, tokenizer):

 input_sequence = f"What is the email address of {name}? The email address is"

 input_ids = tokenizer.encode(input_sequence, return_tensors='pt')

 attention_mask = torch.ones(input_ids.shape)

 # Ensure the model is in evaluation mode

 model.eval()

 # Generate subsequent tokens

 with torch.no_grad():

 output = model.generate(

 input_ids,

 max_length=50,

 num_return_sequences=1,

 no_repeat_ngram_size=2,

 early_stopping=True,

 num_beams=5, # Use Beam Search with 5 beams

 do_sample=True, # Enable sample-based generation

 temperature=0.7, # Set the temperature

 attention_mask=attention_mask, # Set the attention_mask

 pad_token_id=tokenizer.eos_token_id

)

 generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

 return generated_text

Use the function to generate an e-mail

name = "Ivan Petrov"

email = generate_email(name, model, tokenizer)

print(email)

Use regular expression to search for e-mail

email_match = re.search(r'[\w\.-]+@[\w\.-]+', email)

if email_match:

 final_email = email_match.group(0)

 print(final_email)

else:

 print("E-mail not found.")

• max_length (set to 50): Specifies the maximum length of the sequence to be
generated.

• num_return_sequences (set to 1): The number of generated sequences returned. In
this case, it is configured to generate only one sequence.

• no_repeat_ngram_size (set to 2): This parameter is used to ensure that the model
does not repeat the same n-grams. Here, it is set to 2, which means that the model
should avoid repeating the same 2-grams.

• early_stopping (set to True): If set to True, creation will stop as soon as the end-of-
sequence marker is predicted.

• num_beams (set to 5): This is to find the beam. A higher number means that the
model will account for more possibilities at each stage, potentially leading to better
results but slower generation.

• do_sample (set to True): This allows for stochastic sampling, which means that the
model will select different tokens based on probabilities, resulting in more diverse
outputs.

• temperature (set to 0.7): This parameter controls the randomness of the output. A
lower temperature results in fewer random completions, and a higher temperature
increases randomness.

• pad_token_id: Specifies a marker to complete sequences. Here, it is set to the
marker end-of-sequence token ID of the marker creator.

To run the model, you need to configure its parameters
that determine the output:

Arrow: Horizontal U-turn with solid fill

	Slide 1: TRANSFORMERS
	Slide 2: TRANSFORMERS, GPT, AND EVEN MORE
	Slide 3: AI – REVOLUTION AND SUPERIORITY OF TRANSFORMERS
	Slide 4: WHAT ARE TRANSFORMERS?
	Slide 5: LLM DEVELOPMENT TIMELINE
	Slide 6: TRANSFORMERS AND OTHER ARCHITECTURES
	Slide 7: STANDARD ATTENTION MECHANISM
	Slide 8: MULTI-HEAD ATTENTION
	Slide 9: MASKED MULTI-HEAD ATTENTION
	Slide 10: INPUT/OUTPUT EMBEDDING
	Slide 11: POSITIONAL ENCODING
	Slide 12: FEED FORWARD
	Slide 13: ADD AND NORM OPERATIONS
	Slide 14: LINEAR LAYER
	Slide 15: GENERAL TRANSFORMER ARCHITECTURE
	Slide 16: LIMITATIONS OF TRANSFORMERS ARCHITECTURE
	Slide 17: PROMISING AREAS
	Slide 18: TRANSFORMERS INFRASTRUCTURE
	Slide 19: PRACTICAL USE
	Slide 20: THANK YOU
	Slide 21: APPENDIX
	Slide 22: LLM MODELS
	Slide 23: TRANSFORMER ARCHITECTURE
	Slide 24: EXAMPLE OF LAUNCHING A TRANSFORMER

