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EXPLAINABILITY
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XAI resembles a black box, and it becomes a 
challenging task for the experts to 
understand a logical explanation of the 
algorithm’s decisions.

DATA PRIVACY
AI MODEL COMPLEXITY

HUMAN BIAS ISSUES
USERS UNDERSTANDING

The Global Explainable AI Market 
size was valued at USD 5.10 

billion in 2022, and it is predicted 
to reach USD 24.58 billion by 

2030, with a CAGR of 21.5% from 
2023 to 2030.

Explainable AI Market
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AI explanation refers to the process and techniques used to make the decision-making mechanisms of artificial intelligence 
(AI) models transparent, understandable, and interpretable to humans. This involves clarifying how and why AI systems 

arrive at specific conclusions or actions, especially in complex models where the decision process is not inherently obvious.
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How Do Weights 
Work in AI?

• Weights in AI models are 
determined during the training 
process, where the model 
learns from a dataset to make 
accurate predictions or 
decisions.

• These weights adjust as the 
model learns, striving to 
minimize errors in its 
predictions compared to the 
actual outcomes.

WHAT IS ARTIFICIAL INTELLIGENCE?
• Artificial Intelligence (AI) encompasses systems or machines that mimic human 

intelligence to perform tasks and can iteratively improve themselves based on the 
information they collect.

• AI operates using algorithms, complex mathematical models that make decisions 
based on input data. These algorithms are powered by weights, which are 
essentially the parameters that influence decision-making.

THE PROBLEM: INCORRECT WEIGHTS LEAD TO 
INACCURATE RESULTS
• If a model is trained on biased, insufficient, or irrelevant data, the weights may be 

adjusted incorrectly. This can lead to the model making erroneous predictions or 
decisions.

• An example of this issue can be seen in the financial industry, where a loan 
approval AI system trained on biased historical data might unjustly favor or 
discriminate against certain groups of applicants. Such a system could deny loans 
to qualified individuals or approve loans for those who are not likely to repay, 
based on flawed weight adjustments.

THE SOLUTION: EXPLAINING AI THROUGH RULES OR DECISION 
TREES:

The XAI’s approach is to translate the model's complex decisions into 
understandable rules or decision trees.



OVERVIEW OF XAI METHODS
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In the quest to make artificial intelligence (AI) more interpretable and transparent, Explainable AI (XAI) employs a variety of 
methods and tools designed to shed light on the decision-making processes of complex models. These methods can 

broadly be categorized into model-agnostic, model-specific, and visualization-based approaches, each offering unique 
insights into how AI systems operate.
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XAI Process

Model-Agnostic Methods
Model-Specific Approaches

Visualization-Based Approaches

These methods are designed to work 
with any machine learning model, 
providing flexibility and broad 
applicability. They do not require access 
to the model's internal architecture, 
making them highly versatile for 
explaining different types of AI models.

In contrast, model-specific methods 
are tailored to specific types of models. 
They leverage the internal mechanics 
of the models they are designed to 
explain, offering deeper insights into 
the model's decision-making process. 
However, their applicability is limited to 
certain model types

Visualization tools and techniques play a 
crucial role in XAI by providing intuitive and 
accessible explanations. They transform 
complex model outputs into visual formats 
that are easier to understand, making them 
an invaluable resource for both technical 
and non-technical stakeholders.

POPULAR XAI METHODS

LIME (Local Interpretable 
Model-Agnostic 
Explanations)

Generates local explanations by 
using simple models to 
approximate the predictions of the 
AI model in the vicinity of a 
particular point.

LRP (Layer-wise Relevance 
Propagation)

Assigns relevance scores to input 
features, reflecting their 

contribution to the model's 
prediction.

SHAP (SHapley Additive 
Explanations)

uses Shapley's game to compute 
the contribution of each input 
element to the model's prediction

GAM (Generalized Additive 
Model)

Represents the AI model as a sum 
of simple functions, each of which 

explains the dependence of the 
prediction on one of the input 

parameters.

Counterfactual 
Explanations

Generates examples of input data 
that lead to a change in the 
prediction of the model.

Rationalization
Rationalization uses inference 

techniques to create rule-based 
explanations.
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Among the various approaches to XAI, attribution methods like SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable 
Model-agnostic Explanations) have emerged as key players. These methods offer a nuanced view into the "why" behind AI's 

decisions, presenting a weighted significance of the features that drive model outcomes.
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Redefining Interpretability: Attribution methods are revolutionizing how we interpret AI models, shifting 
the paradigm from opaque "black boxes" to transparent systems where decision paths are not just visible but 
quantifiable.
Application Examples: In finance, SHAP has elucidated credit scoring decisions, while LIME has shed light on 
healthcare AI, providing clear reasoning behind patient diagnosis predictions.

The Power of Feature Attribution: By assigning a quantitative value to each feature's contribution to a 
prediction, these methods demystify the AI decision-making process, empowering users with actionable 
insights.
Application Examples: Marketing analytics utilize attribution methods to pinpoint which customer interactions 
most influence purchase decisions, enhancing targeted strategies.

Facilitating Trust and Ethical AI: Attribution methods play a critical role in building trust between AI 
systems and their human users by ensuring decisions are fair, understandable, and aligned with ethical 
standards.
Application Examples: In law enforcement, LIME and SHAP have been applied to predictive policing models to 
ensure transparency and prevent bias in crime prediction algorithms.

Promoting Model Improvement and Innovation: Beyond explanation, attribution methods offer a 
feedback loop for model refinement, highlighting inaccuracies or biases in feature weighting that can be 
corrected for more accurate future predictions.
Application Examples: In autonomous vehicle development, attribution methods help identify and correct 
sensor input weights, improving decision accuracy in dynamic driving environments.
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A comprehensive, layered approach to XAI architecture not only ensures clarity and transparency in AI's decision-making processes 
but also enhances model reliability and stakeholder trust. This slide delves into the necessity of adopting a complex, layered 

framework to effectively unpack the "black box" of AI, providing meaningful insights and explanations.
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Complexity Demands Structure. As AI systems grow in complexity, a structured, 
layered approach is paramount for dissecting and understanding their inner workings. 
Each layer focuses on a specific aspect of the AI pipeline, from data sourcing to model 
explanation, ensuring thorough analysis and clarity.

Holistic Data Handling. Effective XAI begins with comprehensive data management, 
from aggregation of legacy sources to advanced preprocessing and fusion. Each stage 
is crucial for ensuring the quality and integrity of data feeding into AI models.

Interpretable Model Development. Creating interpretable models requires careful 
construction and training, with an emphasis on selecting algorithms that balance 
predictive power with explainability.
Implication: Through deliberate model selection and hyperparameter tuning within its 
dedicated layer, AI developers can enhance both model performance and the feasibility 
of subsequent explanations.

Advanced Explanation Techniques. Employing advanced attribution methods like 
SHAP and LIME in a distinct interpretation layer allows for detailed insights into how AI 
models arrive at their decisions, illuminating the contribution of individual features.

Ensuring Model and Data Security. Incorporating security and privacy considerations 
into each layer is essential for protecting sensitive information and complying with 
regulatory standards.

IMPLICATIONS:
• By meticulously preparing and optimizing data 

across multiple layers, AI systems can make 
more accurate and interpretable predictions, 
reducing biases and errors.

• This dedicated layer for model interpretation 
provides stakeholders with clear, actionable 
explanations, fostering trust and facilitating 
more informed decision-making.

• A layered architecture with built-in security 
measures safeguards against data breaches 
and unauthorized access, ensuring ethical AI 
utilization.
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In the evolving landscape of artificial intelligence, ensuring the trustworthiness, security, and ethical deployment of AI 
systems is paramount. AI Trust, Risk, and Security Management (TrISM) emerges as a critical framework in this endeavor, 
seamlessly aligning with Explainable AI (XAI) principles to foster transparent, secure, and reliable AI solutions. This slide 

explores the convergence of AI TrISM and XAI, highlighting their collaborative role in enhancing trust in AI technologies.
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AI TrISM and XAI together form the cornerstone of trust in AI by 
emphasizing transparency, explainability, and accountability in 
AI systems.

XAI contributes to TrISM by enabling a deeper understanding 
of AI models, which is essential for identifying, assessing, 
and mitigating risks.

A thorough grasp of AI model behaviors, facilitated by 
XAI, is crucial for implementing effective security 
measures and protecting against malicious exploits.

The convergence of AI TrISM and XAI is 
instrumental in ensuring AI systems operate within 
ethical boundaries and comply with existing and 
emerging regulations.

Augmented-AI 
Managed TRiSM

Phase 5
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SHAP: SHapley Additive exPlanations
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SHAP (SHapley Additive exPlanations) is a cutting-edge, model-agnostic tool designed to explain the output of any machine learning (ML) model. It 
utilizes game theory principles, particularly Shapley values, to allocate an "importance" value to each feature for a given prediction. Essentially, SHAP 
breaks down a model's prediction into the contribution of each feature, thereby offering a detailed explanation of how each feature influences the 
prediction. This transparency is vital for understanding, trusting, and effectively using AI models.

STEP 1. Define the Model 
and Prediction to Explain

STEP 2. Identify the 
Feature Set

STEP 3. Calculate the 
Marginal Contribution

STEP 4. Compute the 
Shapley Value

Let 𝑓 be the model you want to explain, and 𝑥 be a specific instance (data 
point) with features [𝑥1, 𝑥2, … , 𝑥𝑛] for which you want to explain the model 
prediction 𝑓(𝑥).

STEP 6. SHAP 
Visualizations

STEP 5. Additive 
Explanation

Consider all subsets 𝑆 of the full set of features 𝑁 = {1,2, … , 𝑛}, excluding 
the feature 𝑖 for which you want to compute the SHAP value. Each subset 
represents a different combination of features present in the model.

For each subset 𝑆 of features, calculate the contribution of adding feature 𝑖 to 
the subset. This is done by comparing the model's prediction with feature 𝑖 
included versus excluded:
Contribution: 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑆, 𝑖) = 𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)

where 𝑓(𝑆) is the model prediction for subset S and 𝑓(𝑆 ∪ {𝑖}) is the 
prediction when 𝑖 is added to 𝑆.

The SHAP value for feature 𝑖 is the weighted average of its marginal contributions 
across all possible subsets:

𝜙𝑖 = 
𝑆⊆𝑁{𝑖}

𝑆! 𝑛 − 𝑆 − 1 !

𝑛!
× 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑆, 𝑖)

Here, 𝑆 ! is the factorial of the number of features in subset S,  𝑛 − 𝑆 − 1  is 
the factorial of the number of features not in 𝑆 excluding 𝑖, and 𝑛! is the factorial 
of the total number of features. This formula ensures each subset 𝑆 is weighted 
according to the number of ways it can be formed.

The final prediction is explained as the sum of individual feature contributions 
(Shapley values): 𝑓 𝑥 =  σ𝑖 𝑆𝐻𝐴𝑃(𝑖)

Applications of SHAP in Financial AI

CREDIT SCORING
Challenge: Credit scoring models assess the 
creditworthiness of individuals based on a wide 
array of data. The opacity of these models can lead 
to misunderstandings, disputes, and potential bias, 
affecting customers' financial opportunities.

Application of SHAP: By applying SHAP to credit 
scoring models, lenders can see the exact impact 
of different borrower attributes on their credit score. 
This could include factors such as repayment 
history, debt-to-income ratio, credit utilization, and 
length of credit history.

Outcome: The transparency provided by SHAP 
enables lenders to communicate more effectively 
with applicants, explaining precisely why a credit 
application was approved or denied. This not only 
enhances the applicant's trust but also provides 
them with actionable insights on how to improve 
their creditworthiness. Furthermore, lenders can 
use these insights to identify and mitigate potential 
biases in their models, ensuring fairer credit 
decisions
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LIME (Local Interpretable Model-agnostic Explanations)

STEP 1. Select the 
Instance to Explain

LIME (Local Interpretable Model-agnostic Explanations) is a technique used to explain the predictions of any machine learning model in an 
interpretable and faithful way. The mathematical foundation of LIME (Local Interpretable Model-agnostic Explanations) involves approximating the 
complex, often non-linear decision boundary of any machine learning model with a simpler, 
interpretable model around the vicinity of the instance being explained.

STEP 2. Perturb the 
Dataset

STEP 3. Get Predictions 
for Perturbed Samples

STEP 4. Weight the New 
Samples

STEP 5. Train an 
Interpretable Model

STEP 6. Explain the 
Prediction

Choose a specific prediction made by the model that you want to explain. This instance could 
be a single data point, such as an image, a text document, or a row in a dataset.

Generate a new dataset consisting of perturbed samples around the selected instance. This 
involves creating variations of the instance by tweaking its features slightly or introducing noise. 

Use the original machine learning model to make predictions on this new perturbed dataset.

Assign weights to the perturbed samples based on their proximity to the original instance. 
Samples that are more like the original instance are given more weight

Train a simple, interpretable model (such as a linear regression model for tabular data or decision 
trees) on the dataset of perturbed samples, using the predictions as targets and the weights from 
the previous step. The choice of model is crucial as it needs to be inherently interpretable.

Use the coefficients or features importance from the interpretable model to explain the 
prediction of the original instance. In the case of a linear model, the coefficients 
represent the contribution of each feature to the prediction.

Let x be the instance to be explained, and let x′ represent a perturbed version of x.

Perturbed samples {𝑥′1, 𝑥′2, … , 𝑥′𝑁 } → complex model 𝑓(𝑥′𝑖)

Define a proximity measure 𝜋𝑥 (𝑥′ ) that quantifies the closeness of the perturbed sample 𝑥′  to the 

original instance 𝑥:     𝜋𝑥 𝑥′ = 𝑒𝑥𝑝 −
𝑥−𝑥′ 2

2𝜎2 , here …  is Euclidean distance between 𝑥 and 𝑥’

Assign weights to each perturbed sample based on their proximity to 𝑥, using𝜋𝑥 𝑥′

The optimization can be formulated as: min𝑔∈𝐺 𝐿 𝑓, 𝑔, 𝜋𝑥 + Ω(𝑔) , where L is a loss function measuring the 
discrepancy between the complex model's predictions and those of the interpretable model g over the 
perturbed samples, weighted by their proximity to x. Ω(g) is a complexity term that ensures the simplicity of g.

Once g is trained, its parameters (e.g., coefficients in a linear model) provide the explanation 
for the prediction of x by indicating the importance of each feature.

CHURN ANALYSIS

Challenge: Identifying customers likely to 
leave a service or product is crucial for 
businesses to implement retention 
strategies. However, the reasons behind 
customer churn can be complex and 
varied.

Application of LIME: By applying LIME to a 
churn prediction model, businesses can 
understand the specific factors 
contributing to individual customer's churn 
predictions. For example, LIME can reveal 
that a particular customer's predicted 
churn is heavily influenced by their 
subscription plan's limitations and a recent 
increase in service complaints.

Outcome: This insight allows businesses 
to tailor personalized retention strategies, 
such as offering plan upgrades or 
addressing service issues, effectively 
reducing churn rates.

Application of LIME in Financial AI
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The architecture of an Explainable AI (XAI) framework
1. Legacy Sources Layer

Data Aggregator: 
Consolidates data from 
different legacy systems.

Data Harmonizer: Aligns and 
standardizes data formats 
and schemas.

2. Data Preprocessing Layer

Data Cleaner: Removes noise, 
handles missing values, and 
corrects errors.

Normalizer/Standardizer: Scales 
data to a standard range or 
distribution.

Encoder: Transforms categorical 
variables into a format suitable for 
model training (e.g., one-hot 
encoding).

Feature Extractor (e.g., FreeSurfer 
for neuroimaging data): Extracts 
meaningful features from complex 
datasets. For instance, FreeSurfer 
could be used to extract brain 
structures from MRI data.

3. Data Fusion and 
Feature Selection Layer

Data Fusion Module: Combines data 
from different modalities/sources 
into a unified dataset.

Feature Selector: Employs methods 
like PCA for dimensionality reduction 
or algorithms to identify the most 
relevant features for the model (e.g., 
mutual information, feature 
importance scores).

4. Multimodal Prepared 
Data

Data Integrator: Finalizes the 
preparation of multimodal data 
ensuring it is ready for model 
training.

Dataset Optimizer: Applies 
last-minute optimizations, 
balancing, and splitting of the 
dataset into training, validation, 
and test sets.

5. Model Creation

Model Builder: Frameworks and 
libraries for model construction 
(e.g., scikit-learn, TensorFlow, 
PyTorch) to create the model 
architecture.

Hyperparameter Tuner: Tools 
for automating the search for 
optimal model settings (e.g., 
GridSearchCV in scikit-learn).

Model Trainer: The process of 
training the model on the 
prepared data, including 
validation steps to prevent 
overfitting.

6. Interpretation Layer 
(SHAP, LIME)

SHAP Interpreter: A module that 
applies SHAP to the model to 
generate feature contributions for 
each prediction.

LIME Interpreter: Similar to 
SHAP, this module uses LIME to 
provide local interpretable 
explanations for individual 
predictions.

7. Local Feature 
Contribution and 

Explanation

Explanation 
Visualizer: Tools and 
libraries for creating 
visual explanations 
(e.g., Matplotlib, 
Seaborn, Plotly) that 
illustrate the 
contribution of 
features to each 
prediction.

Explanation 
Summarizer: 
Generates textual 
explanations or 
summaries of the 
features' contributions, 
often using natural 
language processing 
(NLP) techniques for 
better accessibility to 
non-technical users.

Source Source Source
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